A large-strain finite element formulation for biological tissues with application to mitral valve leaflet tissue mechanics.

نویسندگان

  • Eli J Weinberg
  • Mohammad R Kaazempur-Mofrad
چکیده

This paper presents a finite element formulation suitable for large-strain modeling of biological tissues and uses this formulation to implement an accurate finite element model for mitral valve leaflet tissue. First, an experimentally derived strain energy function is obtained from literature. This function is implemented in finite elements using the mixed pressure-displacement formulation. A modification is made to aid in maintaining positive definiteness of the stiffness matrix at low strains. The numerical implementation is shown to be accurate in representing the analytical model of material behavior. The mixed formulation is useful for modeling of soft biological tissues in general, and the model presented here is applicable to finite element simulation of mitral valve mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A finite shell element for heart mitral valve leaflet mechanics, with large deformations and 3D constitutive material model.

This paper presents a shell finite element formulation appropriate for simulating the heart valve leaflet mechanics, including three-dimensional (3D) stress and strain effects. A 4-node mixed-interpolation shell is formulated in convected coordinates. This shell model is made capable of handling arbitrary 3D material models by use of an algorithm that satisfies the shell stress assumption at ev...

متن کامل

On the Constitutive Models for Heart Valve Leaflet Mechanics

Large-strain constitutive modeling of biological tissues has grown enormously as a field in the past decade. This paper investigates the viability of the existing models for describing heart valve leaflet mechanics. The properties of the leaflet tissue are discussed, and a variety of constitutive models are addressed. Models based on continuum and unit cell approaches are highlighted as being s...

متن کامل

Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet.

Despite continued progress in the treatment of aortic valve (AV) disease, current treatments continue to be challenged to consistently restore AV function for extended durations. Improved approaches for AV repair and replacement rests upon our ability to more fully comprehend and simulate AV function. While the elastic behavior the AV leaflet (AVL) has been previously investigated, time-depende...

متن کامل

A High-Fidelity and Micro-anatomically Accurate 3D Finite Element Model for Simulations of Functional Mitral Valve

Promising mitral valve (MV) repair concepts include leaflet augmentation and saddle shaped annuloplasty, and recent long-term studies have indicated that excessive tissue stress and the resulting strain-induced tissue failure are important etiologic factors leading to the recurrence of significant MR after repair. In the present work, we are aiming at developing a high-fidelity computational fr...

متن کامل

Application of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation

Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomechanics

دوره 39 8  شماره 

صفحات  -

تاریخ انتشار 2006